1,474 research outputs found

    Assessing Risk at the National Strategic Level: Visualization Tools for Military Planners

    Get PDF
    The reemergence of great power competition, conflict with near-peer competitor states below the level of armed conflict, and persisting threats from nonstate actors with transnational ambitions and global reach pose challenges for strategists planning, executing, and assessing military operations and strategy. Building on current visualization tools, two proposed models—the National Strategic Risk Abacus and the National Strategic Risk Radar Chart—address these challenges and better depict how the US military may inadvertently contribute to risk at the national strategic level

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries

    Get PDF
    We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design

    Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation

    Get PDF
    We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112)〈110〉, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e.g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions

    Shock compression and spallation of single crystal tantalum

    Get PDF
    We present molecular dynamics simulations of shock-induced plasticity and spall damage in single crystal Ta described by a recently developed embedded-atom-method (EAM) potential and a volumedependent qEAM potential. We use impact or Hugoniotstat simulations to investigate the Hugoniots, deformation and spallation. Both EAM and qEAM are accurate in predicting, e.g., the Hugoniots and γ - surfaces. Deformation and spall damage are anisotropic for Ta single crystals. Our preliminary results show that twinning is dominant for [100] and [110] shock loading, and dislocation, for [111]. Spallation initiates with void nucleation at defective sites from remnant compressional deformation or tensile plasticity. Spall strength decreases with increasing shock strength, while its rate dependence remains to be explored

    Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots

    Get PDF
    A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.Comment: 4 pages, 4 figure

    Factors on Vibrational Harm during Hammer Drilling : Influences of Lateral Force, Feed Force, Hammer Drill and Drill Bit Type

    Get PDF
    When using hammer drills, the user is exposed to vibrations which can cause damage to the body. Those vibrations can be affected by external factors such as feed forces, which can increase the degree of damage to the user. However, currently there is a lack of knowledge as to whether the lateral forces applied by the user also have an influence on the technical system and whether these influences depend on the system. For this reason, a study with 1152 test runs was carried out on a test rig to investigate the relationship between the feed force and the lateral force as a function of the hammer drill setup on the vibrations at the hammer drill housing and main handle. The experiment showed that the feed (p = < .001, up to r = 0.57) and lateral (p = < .001, up to r = 0.77) forces had an influence on the vibrations of the hammer drill. However, these depended strongly on the technical system and hence cannot be generalized. Furthermore, it was proven that the impact frequency of the hammer drill was reduced by increasing both the feed force (p = < .001, r = 0.55) and the lateral force (p = < .001, r = 0.23). The findings can not only be used by engineers and scientists to further develop vibration standards, but also to design more ergonomic hammer drills. Hence, the vibration decoupling of hammer drills should be redesigned so that lateral forces do not lead to an increase in vibrations that are harmful to the user
    • …
    corecore